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alethe & The R Calculus

As well as promising lower energy costs, reversible computing is of
particular interest to molecular computing because it better exploits
the physics of this domain, namely microscopic reversibility. Hence, we
propose a model of reversible computation, the N (aleph) calculus, with
features desirable in a reversible molecular computing context. We also
Introduce the associated programming language, alethe, meaning not
forgotten.

Key Insights

As far as we are aware, all existing reversible programming languages
keep program and data separate. Implementations of such models can
be very complicated, as the computers must maintain an often
complicated representation of where in the program it currently i1s. This
makes direct molecular implementation of such models especially
challenging.

Our model circumvents this by being a term-rewriting system (TRS).
In a TRS, there is no distinction between program and data. Instead,
they are combined into a ‘term’, which gives a completel
representation of the state of computation at any point along its
worldline. As the below listing shows, this representation is concise, and
our reversible TRS makes it particularly easy to step forward and
backward through this computational worldline.
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top-left: An example implementation of Peano addition written in alethe.

top-right: Each term encountered during the reversible addition of 4 to 3.
Note that the result necessarily includes one of the addends.

bottom: A schematic of the control flow of the addition algorithm.

The choice of a TRS makes particularly good sense from a molecular
implementation point of view. Terms keep the relevant bits of program
next to the relevant bits of data, allowing computation to be effected
by local operations and manipulation. In contrast, other models often
need to synchronise activity over large domains. Their structure also Is
strongly suggestive of a molecular representation.
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-— a simpler, recursive Infix implementation of Peano addition
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Some simple examples:

the Cantor pairing function 7 : N? < N
this definition makes use of the comparison operator
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the Factorial function, with no garbage
this is only a partial bijection, and will not compute 0!
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a one hole context representation of a bi-infinite tape

data .

data .

data .

Z ] "Pop” [ I;
( ) ] “Pop” ( ) XS;

] “Pop” [ 1;

——— tape movement

( ) - ( )

-— a four-tape reversible Turing Machine (RTM), per Bennett [1]

1 Rewriting rules are defined externally, but require no extra hidden state and are intended to be shared between programs. In effect, they define a DSL (domain-specific language).
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Definition

The N calculus has a very simple and concise definition. In BNF
notation, this Is:

(pattern term) T ::= ATOM | VAR | (7")
(rule) pu=T1"> 7"

(definition) §

pip| T

alethe Is essentially the same except for some syntactic sugar for
common programming motifs. The model i1s perhaps best understood
by example (see the central listing).

Essentially, we define rules that map terms to other terms. Each rule
has two patterns, and can thus convert a term between these two
forms. Patterns need not match the term as a whole — they can match
anywhere Iin a term. We can express more complex maps via subrules,
which are the primary means of composition.

Additional constraints on this definition, as well as semantics, will be
presented in the full forthcoming paper.

Select Features

- The N calculus 1s microscopically reversible by design
- This makes it directly compatible with the laws of physics without
the need for an external source of free energy.
- It may even make It easier to implement molecularly.
- |t encourages an economical programming style. Often one finds
that garbage data can be recycled somehow or avoided altogether.
- Automatic parallelisation
- When possible, subrules or subterms can be automatically
evaluated In parallel.
- Subrules can even be evaluated in both directions when needed.
- This includes Bennett's algorithm [1] as a special case.
- Effects and interactions are easily accommodated, e.qg.
- Walking along a lattice
- Actuating molecular machinery

Extensions

- If run in a thermally coupled environment, the X calculus can be
extended to handle non-determinism and irreversibility by allowing for
ambiguous patterns. This can be done whilst preserving microscopic
reversibility.

- The N calculus can also be easily extended to support first class
concurrency, in which terms can freely fission and fuse. The
semantics and consequences of this will be discussed in the full

paper.

Both of these extensions permit entropy-generating behaviour and so
should be used with caution.

Future work

Though the N calculus is motivated by reversible macromolecular
computing systems, it is perhaps too high level for a direct
iImplementation. We plan next on exploring simpler models more
amenable to molecular implementation.
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